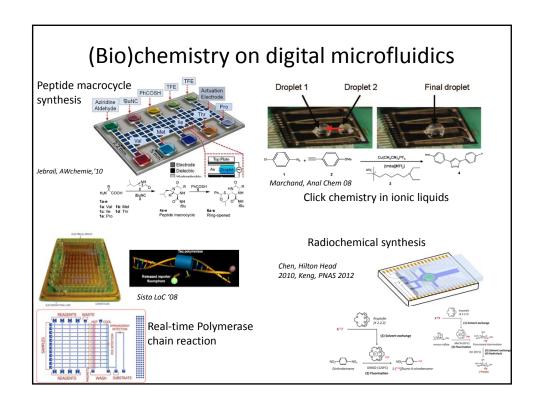
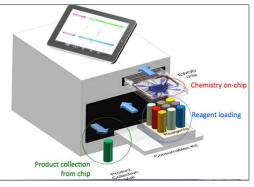

EWOD: Theory and fabrication

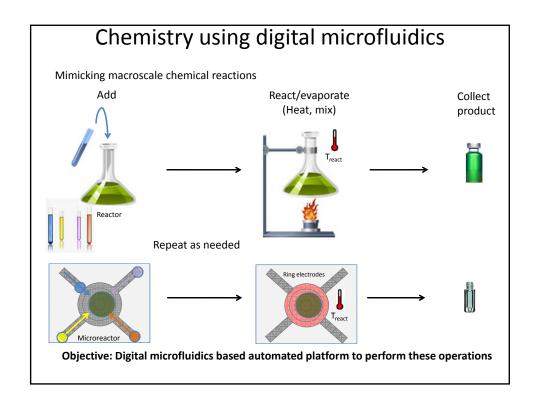

Gaurav J. Shah
Sofie Biosciences
Visiting Scientist, Mike van Dam Lab
4/24/13

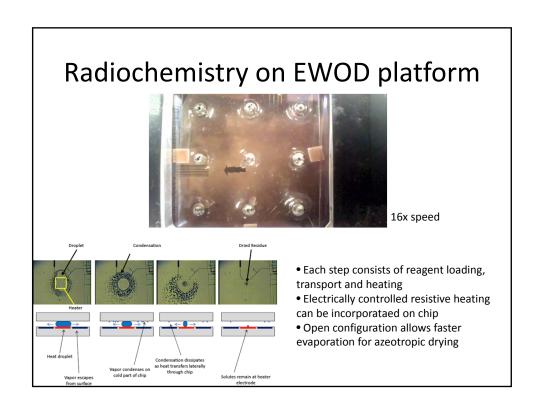
Outline


- Recap: background
- Electrowetting-on-dielectric theory
 - Thermodynamic: historic view, convenient 'shorthand'
 - Electromechanical: more recent, rigorous and accurate
- Device fabrication
 - Process flow and steps
 - Some key considerations
- Cleanroom tour

- Recap: background
- Electrowetting-on-dielectric theory
 - Thermodynamic: historic view, convenient 'shorthand'
 - Electromechanical: more recent, rigorous and accurate
- Device fabrication
 - Process flow and steps
 - Some key considerations
- Cleanroom tour

Motivation: Radiochemistry on EWOD

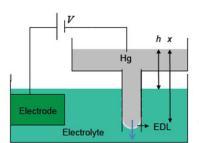



Key advantages:

Compact: towards automated benchtop radiosynthesizer

Open structure allows faster evaporation

Material compatibility (vs. PDMS devices)



- Recap: background
- Electrowetting-on-dielectric theory
 - Thermodynamic: historic view, convenient 'shorthand'
 - Electromechanical: more recent, rigorous and accurate
- Device fabrication
 - Process flow and steps
 - Some key considerations
- Cleanroom tour

Electrowetting: a brief history

- Lippman's experiment on "Electrocapillarity" (1875)
 - Experimentally observed a "decrease in surface tension with applied potential" to mercury column
 - Related it to the charge accumulated at the interface (Electric double layer or EDL)

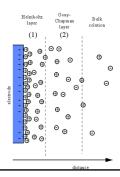
Force balance of the system:

$$\rho_{m}gxA = \rho_{e}g(x-h)A + \gamma P$$

$$\Rightarrow \Delta \gamma = \frac{(\rho_m - \rho_e)gA}{P} \Delta x$$

Recap: Electric double layer

- A polarizable surface in contact with an electrolyte becomes charged
 - Charge could be positive or negative (or surface could be non-polarizable)
- A charged surface in contact with an electrolyte leads to charge redistribution near the interface: Electric Double Layer (EDL)
- Typical thickness ~ 1-10nm
- EDL can sustain a small electrical potential across it
- → Acts like a small capacitor



yamnle of the polarizable and non-polarizable interfaces

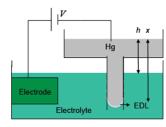
PZC: potential of zero charge $\Phi = V - V_{PZC}$

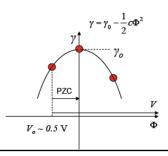
Lippmann Equation

• Above PZC, (effective) change in surface tension, $\Delta\gamma$, is proportional to V^2

$$\frac{d\gamma}{d\Phi} = -\frac{Q}{A} = -q = -c\Phi$$

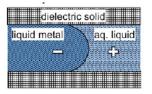
c: capacitance per unit area of EDL

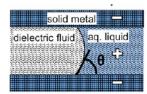

$$\gamma = \gamma_0 - \frac{1}{2}c\Phi^2$$


PZC: potential of zero charge

$$\Phi = V - V_{PZC}$$

$$\gamma = \gamma_0 - \frac{1}{2}c(V - V_{PZC})^2$$


Lippmann Equation



Electrocapillarity → Electrowetting

- Electrocapillarity: potential across a liquid-liquid interface
- \rightarrow $\gamma_{II'}$ changes
- Electrowetting (EW): potential across solid-liquid interface
- $\rightarrow \gamma_{sl}$ changes
 - First shown in 1981 by Beni et al.
 - Leads to decrease in contact angle (wetting) of liquid on solid

EW induced contact angle change

- Relates contact angle change to interface potential
 - Young's Equation is force balance of surface tensions in the x-direction

Young's Equation:

Lippmann-Young equation:

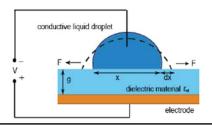
$$\gamma_{sl} = \gamma_{sv} - \gamma_{lv} \cos \theta$$

Lippmann Equation:

 $\gamma_{sl}(\Phi) = \gamma_{sl}(0) - \frac{1}{2}c\Phi^2$

$$\cos(\theta(\Phi)) = \cos\theta_0 + \frac{1}{2\gamma_{b'}}c\Phi^2$$

Note: the voltage ϕ in the equations is the potential at the interface (i.e., potential difference from PZC), not the applied voltage V in the figures below.

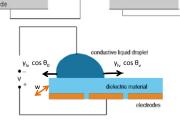

Moon and Kim (2002) Electrolyte (aq.) PZC: potential of zero charge

EW→Electrowetting-on-dielectric (EWOD): Why on-dielectric?

- EW only across EDL has limited force (effectiveness)
 - Only small potential (Φ) is applicable before EDL breakdown and current leakage Lippmann-Young equation:
 - → Only small contact angle change can be achieved
 - Contact angle change tends to be irreversible

$$\cos(\theta(\Phi)) = \cos\theta_0 + \frac{1}{2\gamma_b}c\Phi^2$$

- Dielectric layer is employed to improve reversibility of electrowetting:
 - Higher voltage can be sustained: large force
 - Reversible process

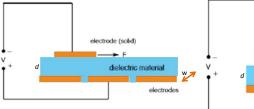

Lippmann-Young Equation for EWOD

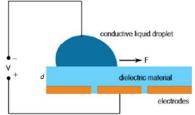
$$\cos(\theta(\Phi)) = \cos\theta_0 + \frac{1}{2\gamma_b}c\Phi^2$$

Since PZC $^{\sim}$ 0, the Φ in the equation equals the applied voltage V in the figures

$$\cos(\theta(V)) = \cos\theta_0 + \frac{1}{2\gamma_b}cV^2 = \cos\theta_0 + \frac{1}{2\gamma_b}\frac{\varepsilon_d\varepsilon_0}{d}V^2$$

Specific capacitance, c (per unit area) $\Phi = V - V_{PZC}$


EWOD Force:


$$F = \gamma_{lv} w \cdot (\cos \theta(V) - \cos \theta_0) = \frac{w}{2} \left(\frac{\varepsilon_d \varepsilon_0}{d} V^2 \right)$$

- 1. Droplet is assumed to be conductive → no voltage drop across it
- Usually there is also a thin hydrophobic layer between dielectric and droplet
 - Much thinner than dielectric **>** contributes little to capacitance
- 3. The more common EWOD configuration used in EWOD microfluidics replaces the ground wire with a ground plane (reference electrode)

Electromechanical interpretation of EWOD

- Consider a electrode plate that can move in parallel
- Consider a conductive liquid droplet that can slide on dielectric surface

Electrostatic force:

EWOD force (as found by Lipmmann Young Eq.):

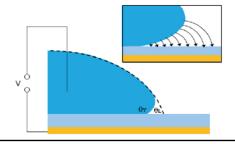
$$F = -\frac{\partial U}{\partial x} = -\frac{\partial}{\partial x} \left(-\frac{A}{2} \left(\frac{\varepsilon_d \varepsilon_0}{d} V^2 \right) \right) = -\frac{\partial}{\partial x} \left(-\frac{wx}{2} \left(\frac{\varepsilon_d \varepsilon_0}{d} V^2 \right) \right)$$
$$F = \frac{w}{2} \left(\frac{\varepsilon_d \varepsilon_0}{d} V^2 \right) = \frac{w}{2} \left(cV^2 \right)$$

$$F = \gamma_{lv} w \cdot (\cos \theta(V) - \cos \theta_0)$$
$$F = \frac{w}{2} \left(\frac{\varepsilon_d \varepsilon_0}{d} V^2\right) = \frac{w}{2} (cV^2)$$

Lippmann equation leads to the same exact expression as the electrostatic force!

Thermodynamic vs electromechanical

Q. Which is more accurate depiction of physics?

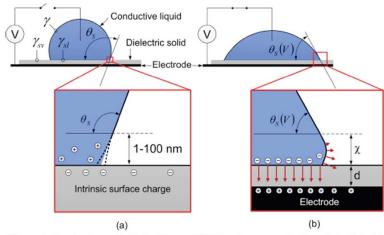

- If Thermodynamic theory:
 - Electrowetting is described as electrical control of surface tension
 - Contact angle reduction is understood as the cause of interface moving
 - Surface tension is the driving force
- If Electromechanical theory:
 - Electrowetting force originates from electromechanical force
 - Contact angle reduction is understood as the result of electromechanical force
 - Electrostatic force is the driving force

Why is this question significant?

- Esp. in radiochemistry, several non-aqueous liquids used
 - Contact angle change is much smaller than water, if any!
 - MeCN, MeOH, DMSO, etc.
- Will EWOD work for these non-aqueous liquids?
 - Based on thermodynamic view: no
 - Based on electromechanical view: maybe!

Electromechanical view "wins"!

- Recent theoretical studies and experimental observations show electromechanical interpretation is more accurate
- Electrical field is concentrated near the meniscus, causing the deformation of droplet → Macroscopic contact angle changes as a consequence
- The **microscopic** contact angle right on the contact line remains Young's contact angle (independent of the applied voltage)



Mugele (JPSM 2007)

Contact angle change is only apparent!

At scales on the order of dielectric thickness, contact angle is unchanged!

→ Not really "electrowetting"! But a convenient shorthand; name stays

The static contact angle of a conductive liquid on an EWOD surface surrounded by a dielectric fluid (a) under no voltage and (b) under voltage. For the boxed drawings enlarged for the contact line region, (a) is more magnified than (b). In (b), χ is on the order of d, which is on the order of 1 μ m in many EWOD devices.

Nelson, Kim (JAST 2012)

Revised thermodynamic view of EWOD:

Effective or equivalent surface tension change

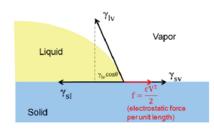
Electromechanical force balance at the three phase contact line:

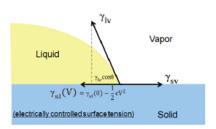
$$\gamma_{sl} + \gamma_{lv} \cos(\theta(V)) = \gamma_{sv} + f$$

$$f = \frac{1}{2}cV^2$$

$$\gamma_{sl} + \gamma_{lv} \cos \theta_o = \gamma_{sv}$$

$$\rightarrow \cos(\theta(V)) = \cos\theta_o + \frac{1}{2\gamma_h}cV^2$$

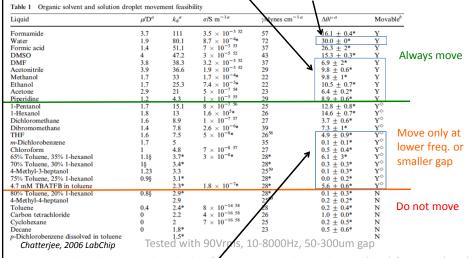

Thermodynamic force balance at the three phase contact line:


$$\gamma_{sl}(V) + \gamma_{lv}\cos(\theta(V)) = \gamma_{sv}$$

$$\gamma_{sl}(V) = \gamma_{sl} - \frac{1}{2}cV^2$$

$$\gamma_{sl} + \gamma_{lv} \cos \theta_0 = \gamma_{sv}$$

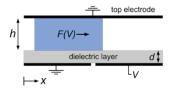
$$\rightarrow \cos(\theta(V)) = \cos\theta_0 + \frac{1}{2\gamma_{iv}}cV^2$$



Equivalent surface tension

Non-aqueous liquids can indeed be moved

Note 1: Even with contact angle change much smaller than water, liquids moved!



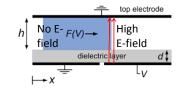
Note 2: Some liquids move only at higher frequencies->Dielectrophoresis (DEP) force too (next) Note 3: Some liquids never moved → non-polar liquids; but MAY move at higher voltages!

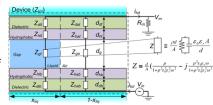
EWOD using AC potential: **EWOD** and **DEP**

- With DC (f=0 Hz): liquid is a resistor in series with dielectric (capacitor) → No current at steady state
 - → No V in liquid; all V is across the dielectric capacitance → Only EWOD
- For AC (f>0Hz): voltage is more complex due to finite conductivity and dielectric constant.
 - → Voltage distributed between liquid and dielectric→ Both EWOD and

Ratio of voltage across each depends on frequency of ac

Liquid impedance $Z_I = R//C$


 $Z = \frac{d}{A} \left(\frac{\rho}{1 + \rho^2 \varepsilon_0^2 \varepsilon_r^2 \omega^2} - j \frac{\rho^2 \varepsilon_0 \varepsilon_r \omega}{1 + \rho^2 \varepsilon_0^2 \varepsilon_r^2 \omega^2} \right)$

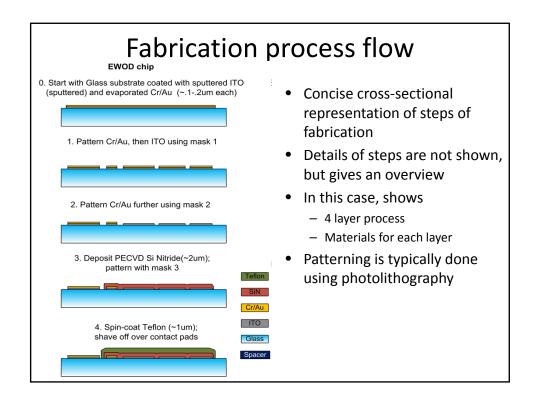

Simplified lumped RC circuit model

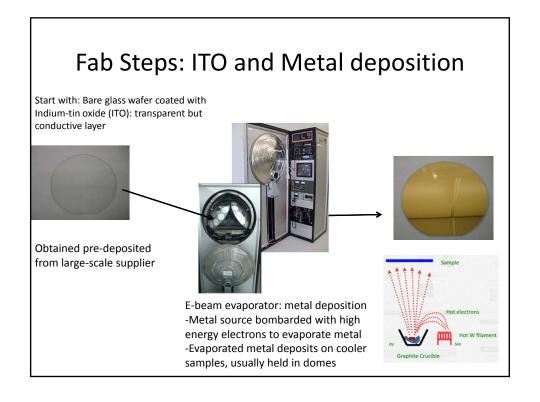
 \rightarrow Liquid impedance Z_i and dielectric impedance Z_d are both frequencydependent

Voltage across the liquid produced Dielectrophoresis (DEP) force

- DEP: force exerted on dielectric particles in a non-uniform electric field
 - Droplet experiences positive DEP→ moves towards higher E-field
- In AC electrowetting, both EWOD and DEP contribute to actuation
- Contributions depend on:
 - the electrical properties and geometry of each layer
 - Actuation frequency

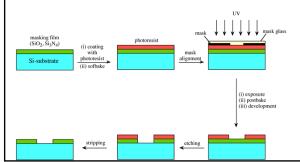
Lumped RC circuit model for 2-plate configuration


Summary: Theory


- EWOD is essentially electrostatic fluidic actuation
 - Only apparently wetting, but electrowetting name has stuck!
 - Enables "digital microfluidics"
 - discrete droplets with individually controllable paths
- Depending on actuation frequency, a combination of EWOD and DEP forces drive droplets
 - Aqueous and organic reagents can be actuated as required in radiochemistry

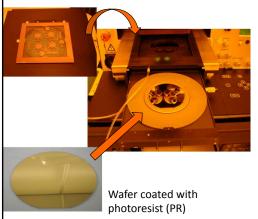
- Recap: background
- Electrowetting-on-dielectric theory
 - Thermodynamic: historic view, convenient 'shorthand'
 - Electromechanical: more recent, rigorous and accurate
- Device fabrication
 - Process flow and steps
 - Some key considerations
- Cleanroom tour

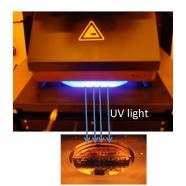
Fabrication of EWOD devices

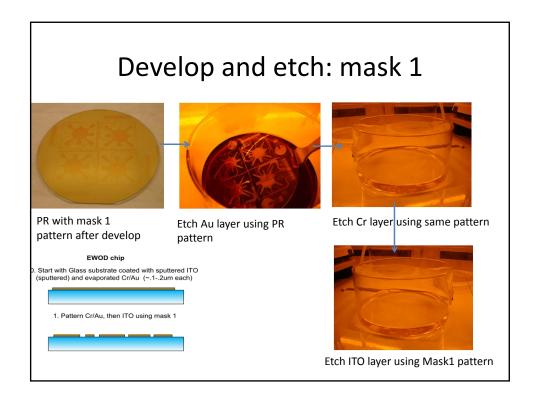

- Most commonly fabricated in cleanroom using microfabrication techniques
- Device is built layer-by-layer:
 - 1. Layer is blanket-deposited
 - 2. Layer is patterned

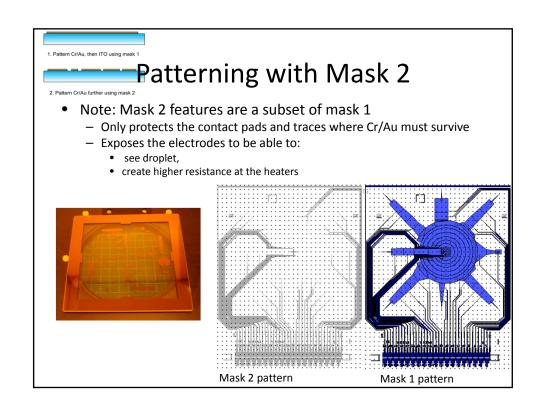
Photolithography (PL)

- Literally "Writing on stone using light"
- Photomask: glass plate containing precisely patterned opaque layer
 - Chromium patterned using a laser beam
- Photoresist (PR): a photosensitive, chemically resistant material
- Typical photolithography steps:

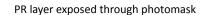


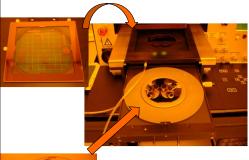



 $\label{eq:mask-1} \textbf{Mask 1: contains the patterns for the electrodes and contact pads}$


Photomask and wafer aligned on Aligner

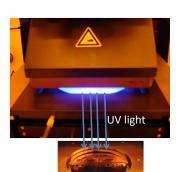
PR layer exposed through photomask





Mask 2: contains the patterns for contact pads and traces

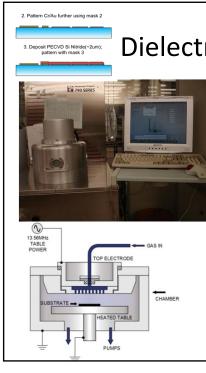
NOTE: Must align with mask 1 patterns!


Photomask and wafer aligned on Aligner

Wafer patterned with mask 2, etched and coated with new PR

Develop and etch w/ mask 2

PR with mask 1 pattern after develop


Similar steps as Mask 1; -features of mask 2 are retained in Cr/Au

Etch Au layer using PR pattern

Etch Cr layer using same pattern

Dielectric deposition

- Using plasma-enhanced chemical vapor deposition (PECVD)
 - Device placed between two electrodes activated with RF voltage to create plasma
 - Gas in sealed chamber reacts on the surface to produce dielectric layer
- Silicon nitride is most commonly used by us
 - Other materials tried:
 - Silicon oxide
 - Parylene-C
 - SU-8

Considerations for dielectric material

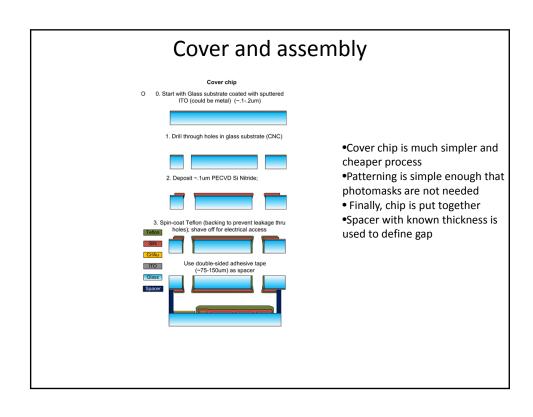
Performance considerations:

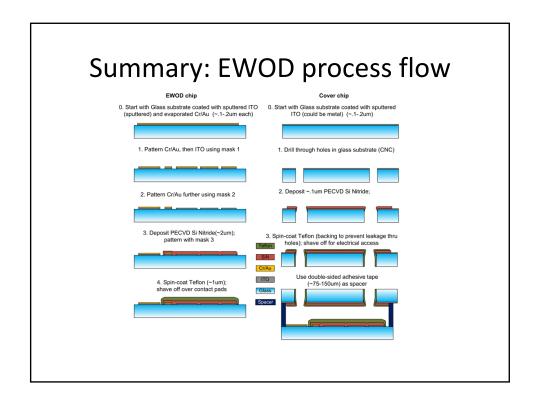
- High dielectric constant
 - Recall: EWOD force is proportional to $arepsilon_d$
- High dielectric strength:
 - prevent breakdown and electrolysis-> causes damage to surface, products
- Good adhesion with substrate, metal and hydrophobic layers:
 - prevent delamination and sample loss
- Recent finding- chemical resistance may be important too!

Fabrication considerations:

- Deposition temperature
 - Au is not allowed at temperatures above ~500 degC
- Deposition time: extremely long and serial processes make fab costlier
- Repeatability of dielectric quality: above performance parameters

Currently looking into alternate dielectric materials, but for now, SiNx is used





Teflon coating

- Finally, a layer of Teflon is spun-on the device
 - Hydrophobic layer to minimize the friction for droplet movement
 - Also provides (some) chemical resistance to the surface
- After spin-coating, Teflon is cured at 330 C in vacuum
- Other hydrophobic materials :
 - Cytop
 - SIOC (not available at UCLA)
 - OTS monolayers (very fragile)

References

- Lippmann (1875) Ann. Chim. Phys. 5 494 (English translation in Mugele and Baret (2005))
- Beni and Hackwood (1981) Appl. Phys. Lett. 38, 4, pp. 207-209
- Moon and Kim (2002) J. Appl. Phys., 92, 7, pp. 4080-4087
- Kang (2002) Langmuir, 18, pp. 10318-10322
- Jones (2003) Langmuir, 19, pp. 7646-7651
- Cho and Kim (2003) J. MEMS, 12, pp. 70-80
- Mugele and Baret (2005) J Phys Condens Matter, 17, 28, pp. R705-R774
- Chatterjee (2006) Lab Chip, 6, pp. 199–206
- Mugele and Buehrle (2007) J. Phys Condens Matter, 19, 375112 (20pages)
- Sadeghi (2012), Anal. Chem., 84, pp. 1915-23
- Fan (2009), Lab Chip, 9, 1236-1242
- Hong (2008) MicrofluidNanofluid, 5, pp. 263–271
- Nelson and Kim (2012), 26, pp. 1747–1771.
- Shah (2011), Transducers, pp. 1260-63 (also Lab Chip 2013 in press)
- MAE 281 lecture notes on Microsciences (CJ Kim)

- Recap: background
- Electrowetting-on-dielectric theory
 - Thermodynamic: historic view, convenient 'shorthand'
 - Electromechanical: more recent, rigorous and accurate
- Device fabrication
 - Process flow and steps
 - Some key considerations
- Cleanroom tour

Thank you! Questions before we gown up?