Automated Radiosynthesizers for PET Probes

R. Michael van Dam March 6, 2013

> March 6, 2013 (START) © R. Michael van Dam. 2013

Outline

- Recap: Synthesis of FDG on robotic synthesis module
- Remote control vs automation
- Basic architecture and elements of radiosynthesizers
- Examples of commercial radiosynthesizers of different types
 - Fixed systems
 - Flexible/modular systems
 - Disposable cassette systems
- In-depth example of ELIXYS radiosynthesizer
- In-depth example of ELIXYS software

Recap: FDG synthesis on robotic synthesis module

Viewing the synthesis from a system/engineering perspective

- How many reaction vessels are needed?
 - Is purification required between steps?
- How does the synthesis translate into the following typical synthesizer operations?
 - Adding reagents to the vessel
 - Mixing vessel contents
 - Heat vessel to perform evaporation
 - Heat vessel to perform reaction
 - Transfer from vessel
 - Purification

Remote controlled chemistry is not automation

- Remote control provides protection from radiation exposure
- But many steps require intervention:
 - Motion manually start, manually stop
 - Oil bath turning on/off and setting temperature
 - Using syringes to add reagents
 - Judging when evaporation complete and removing heat
 - Judging when liquid has flowed through purification cartridge (when to open/close valves)
 - Etc.

March 6, 2013 (START)

R. Michael van Dam. 2013

What is Automation?

- Definition
 - Making an apparatus, process, or system operate without outside intervention (generally under computer control)
- General Goals
 - Increased throughput or productivity.
 - Improved robustness (consistency), of processes or product.
- Advantages:
 - Reduced process/synthesis time (higher synthesis yield)
 - Reduced cost of PET probe (reduced personnel effort)
 - Increased repeatability (make probe consistently from day to day and at different sites)
 - Safety (avoid radiation exposure)
 - Eliminate monotonous work and free up radiochemists to develop new probes

Adapted from http://en.wikipedia.org/wiki/Automation

General architecture of automated radiosynthesizers

Automated transfer of liquids

- Requires a liquid path between the source (e.g. reagent reservoir) and destination (e.g. reaction vessel)
- Electronically-controlled pump provides force to move the liquid
- Electronically-controlled valves control opening and closing of fluid path

Comparison of pump approaches

	Syringe pump	Pressure-driven
Control of volume?	Yes, can accurately dispense arbitrary volume	Difficult to control volume. Generally all or nothing
Feedback signal	Motor position feedback reflects how much volume dispensed	No feedback. Measurement of "mass flow" of gas may enable feedback
Safety	Pressure can build up (if there is a clog) and can leak if it exceeds pressure limits of tubing/fittings	Intrinsic pressure limit (driving pressure)
Cost	Expensive	Inexpensive
Physical size	Bulky	Compact
Disposable?	Yes (syringe)	Yes (vial)

Common types of valves			
Туре	Symbol	Applications	
2-way (shutoff)	→ ⋈—	Open or close a fluid path	
3-way (selector)		Connect one of two inlets to a common outlet	
		Connect a common inlet to one of two outlets March 6, 2013 (START) © R. Michael van Dam, 2013	

Reaction vessels

- General characteristics:
 - Inert material: glass or glassy-carbon
 - Often have a V-shaped bottom to avoid residual liquid
 - Volume commonly 5-20 mL
- Types:
 - Fixed all tubing is always connected to reaction vessel
 - Semi-fixed most tubing is connected to reaction vessel but dip tube is retractable (motorized or pneumatic)
 - Needles/septum sealed Needles are inserted through a septum
 - Reconfigurable

Motion in radiochemistry system – some examples

- Syringe drives
- Raise and lower a dip-tube
- Rotate a stopcock valve
- Robotic synthesis module
 - Raise/lower oil bath
 - Select "stopper"
 - Raise/lower stopper
- Septum-sealed vessel module
 - Rotate needle wheel
 - Raise/lower needles

Comparison of motion actuation

	Leadscrew actuator	Pneumatic actuator
Available positions	Can move to arbitrary positions with high accuracy	Can move to one end of travel or the other
Detectable positions	Can detect "home" and end- points with switches. Can detect intermediate positions with "encoder"	Can detect end-points with switches
Cost	Expensive actuator plus expensive controller	Low-cost actuator. No controller (only requires 2 valves)
Setting amount of force	Difficult	Choose operating pressure (and cylinder bore size)
Actuator size (for a given force)	Large	Small

Sensors provide information about the system in an electronic format

- Desired temperature reached?
 - Thermocouple, thermistor, infra-red sensor, etc.
- Desired pressure reached?
 - Pressure transducer
- Certain amount of time elapsed?
- Moving part arrived at correct position?
 - Position sensors (optical, magnetic, electronic, etc...)
- Has all of liquid flowed from A to B?
 - Liquid detector can monitor contents of transparent tubing
- Other types of sensors:
 - Radiation
 - Can estimate amount of radioactivity in parts of system (e.g. in vials, trapped on cartridges, etc...)
 - Clever combinations of sensors can estimate reaction yield
 - - Provide visual image of part of system (e.g. reaction vial)
 Can verify completion of liquid transfers, completion of evaporation, etc.
 - Difficult for a computer to interpret images

March 6, 2013 (START)

Additional system components that may be found on system diagrams

Filter

Pressure gauge

Pressure regulator

Examples of commercial radiosynthesizers

March 6, 2013 (START) © R. Michael van Dam. 2013

General types of synthesizers

- Fixed
 - System components and plumbing are fixed
 - Can make one probe, or other probes with similar synthesis protocols
 - Replumbing may enable other probes to be made
 - System must be cleaned between syntheses
- Modular
 - System can be expanded with additional hardware (e.g. additional reaction vessels, valves, reagent vials, etc.)
 - Replumbing is essential to incorporate additional elements. Every system is custom.
 - System must be cleaned between syntheses
- Disposable cassette
 - Fluid path designed as a self-contained "cassette" that can be discarded after each synthesis
 - Different cassettes may enable other probes to be made
 - Some systems allow users to reconfigure cassettes (by replumbing)
 - Cleaning is **not** required
 - Sometimes limitations due to materials (polymers) used

ELIXYS radiosynthesizer (cassette-based)

March 6, 2013 (START)

Progression to automation

Remote-controlled

Robotic synthesis module

- Visual feedback for completion of step
- Manual addition of reagents
- Manual control of all components

Semi-automated

ARC-P

- Visual feedback for completion of step
- Automated addition of some reagents
- Automated control of movement and temperature.

Fully automated

ELIXYS

- Integration of three reactors in one system
- Automated control of all components

ELIXYS Radiosynthesizer software

How to choose parameter values?

- For some processes, there are no sensors built into ELIXYS to detect completion. A timer approach is used instead.
- Example: How to determine desired duration of applying gas pressure for reagent addition
 - Load reagent vial with desired volume of desired reagent
 - Deliver at desired pressure to reaction vessel
 - Monitor completion with camera
 - Repeat many times, take maximum time, multiply by safety factor (e.g. 1.3 1.5)
 - Set this as the desired time

Summary

March 6, 2013 (START) © R. Michael van Dam. 2013

Advantages of ELIXYS

- Flexibility for diverse PET probes
 - Up to 3 reaction vessels
 - Movable reactor can withstand high reaction temperatures and pressures
 - Most fluid paths (e.g. connection between a reagent vial and reaction vessel) are created on the fly
 - Allows most reconfiguration to be done in software
 - No need to customize / replumb system
 - Improves standardization of hardware so a custom system isn't used for each probe
- Very few valves and fittings (improves reliability)
- Intuitive software interface, requires no knowledge of hardware architecture of the system
- Cassettes enable rapid shift from probe development to routine production

Summary

- Recapped synthesis of FDG on robotic synthesis module
- Remote control vs automation
- Basic architecture and elements of radiosynthesizers
- Examples of commercial radiosynthesizers of different types
- ELIXYS radiosynthesizer
- ELIXYS software
- Next week: automated radiosynthesizer lab (ELIXYS)

March 6, 2013 (START) © R. Michael van Dam. 2013

Resources

- R. Krasikova. 2007. "Synthesis Modules and Automation in F-18 Labeling". In PET Chemistry: The Driving Force in Molecular Imaging, Schubiger, P.A., Lehmann, L., Friebe, M. (Eds.). 62: 289-316. Springer-Verlag Berlin Heidelberg.
- D.L. Alexoff. 2003. "Automation for the Synthesis and Application of PET Radiopharmaceuticals." In Handbook of Radiopharmaceuticals: Radiochemistry and Applications, Welch, M.J. and Redvanly, C.S. (Eds.). 283-305. John Wiley & Sons, Ltd.
- P.Y. Keng, M. Esterby, R.M. van Dam. 2012. "Emerging Technologies for Decentralized Production of PET Tracers". In Positron Emission Tomography: Current Clinical and Research Aspects. 153-182. InTech.
- J.I. Sachinidis, S. Poniger, H.J. Tochon-Danguy. 2010. "Automation for Optimised Production of Fluorine-18-Labelled Radiopharmaceuticals." Current Radiopharmaceuticals 3: 248-253.
- H.C. Padgett, D.G. Schmidt, A. Luxen, G.T. Bida, N. Satyamurthy, J.R. Barrio. 1989. "Computer-controlled radiochemical synthesis: A chemistry process control unit for the automated production of radiochemicals". Applied Radiation and Isotopes 40(5): 433-445. [Historical paper]